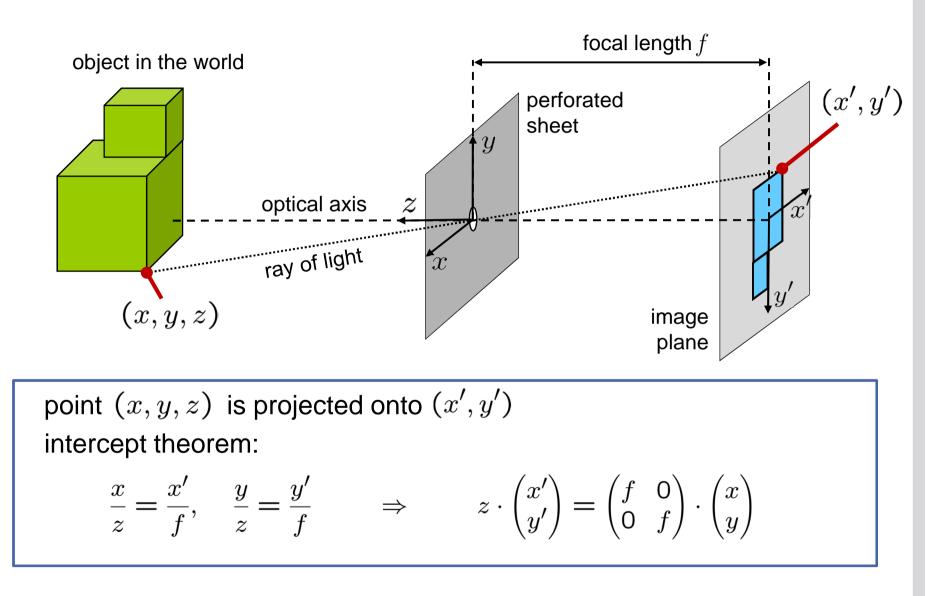


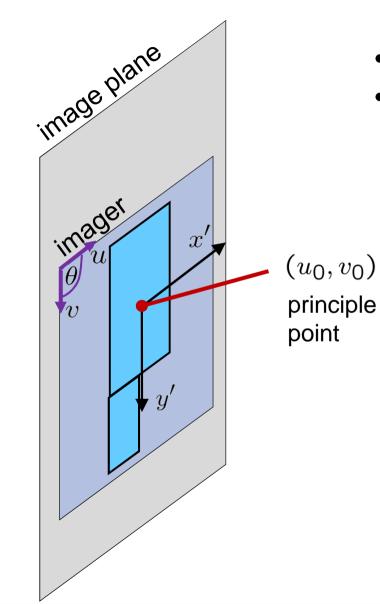
Chapter 7: Camera Optics

mrt

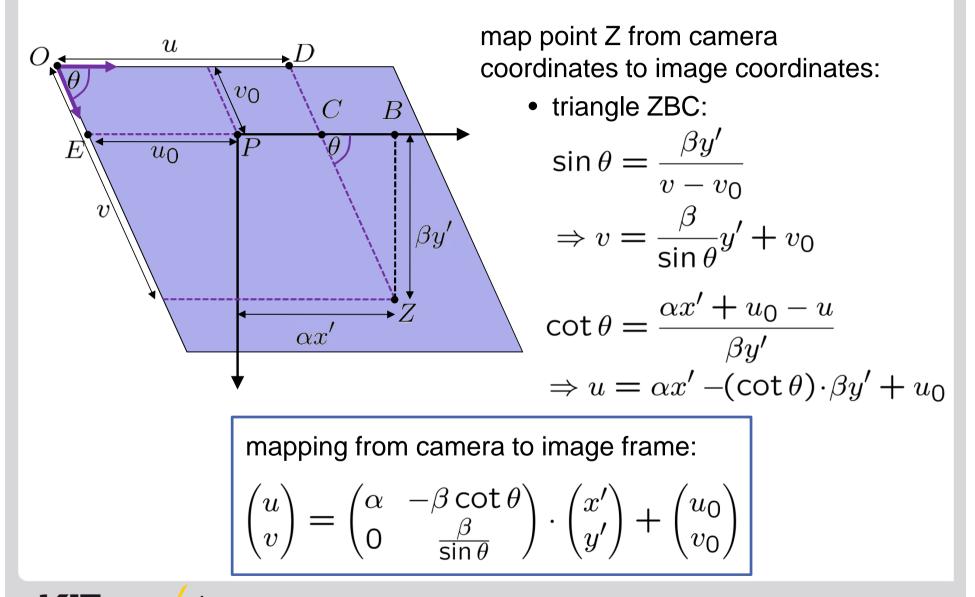
Pinhole Camera



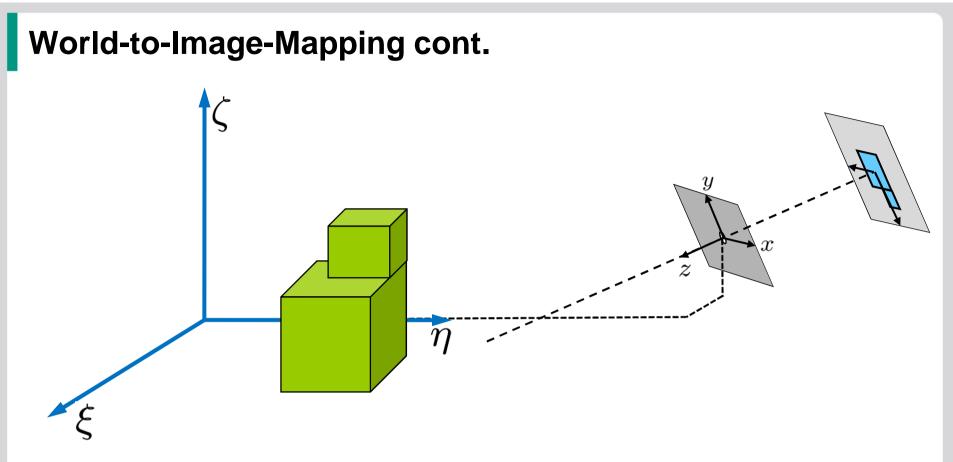
World-to-Image-Mapping



- camera coordinate system
- image coordinate system
 - u-direction parallel to x'-direction
 - v-direction might be skewed
 θ=angle between u- and vdirection
 - principle point=origin of camera coordinate system in image coordinates (u_0,v_0)
 - length of unit vector u and v differ from length of unit vector x', y' scaling factors α, β



IT mrt



- position of objects on camera coordinates usually unknown
- external coordinate system ("world frame") (ξ , η , ζ)

• mapping:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R \cdot \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} + \vec{t}$$
 R: rotation matrix \vec{t} : translation vector

mrt

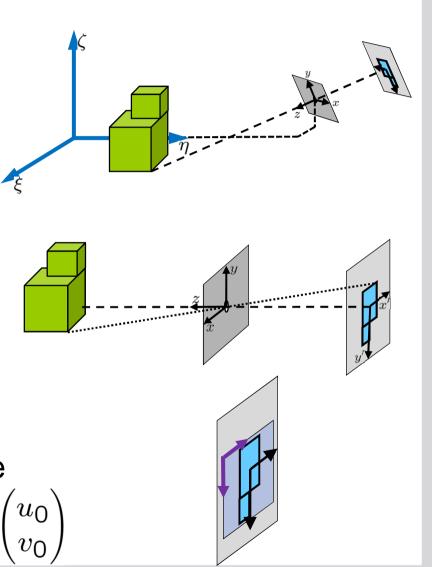
1. coordinate transformation world frame \rightarrow camera frame

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R \cdot \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} + \vec{t}$$

2. perspective projection $z \cdot \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$

mrt

3. coordinate transform camera frame \rightarrow image frame $\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \alpha & -\beta \cot \theta \\ 0 & \frac{\beta}{\sin \theta} \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} +$



• rewriting step 3:

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha & -\beta \cot \theta & u_0 \\ 0 & \frac{\beta}{\sin \theta} & v_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}$$

• rewriting step 2:

$$z \cdot \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

• combining step 2 and 3:

$$z \cdot \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha & -\beta \cot \theta & u_0 \\ 0 & \frac{\beta}{\sin \theta} & v_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \begin{pmatrix} f\alpha & -f\beta \cot \theta & u_0 \\ 0 & \frac{f\beta}{\sin \theta} & v_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \begin{pmatrix} \alpha' & -\beta' \cot \theta & u_0 \\ 0 & \frac{\beta'}{\sin \theta} & v_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \underbrace{\begin{pmatrix} \alpha' & -\beta' \cot \theta & u_0 \\ 0 & \frac{\beta'}{\sin \theta} & v_0 \\ 0 & 0 & 1 \end{pmatrix}}_{=:A}$$

with
$$\alpha' = f\alpha$$
, $\beta' = f\beta$

• rewriting step 1:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \left(R \mid \vec{t} \right) \cdot \begin{pmatrix} \xi \\ \eta \\ \zeta \\ 1 \end{pmatrix}$$

• combining 1 with previous result:

1 ->>

$$z \cdot \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = A \cdot \left(R \mid \vec{t} \right) \cdot \begin{pmatrix} \xi \\ \eta \\ \zeta \\ 1 \end{pmatrix}$$

• given (ξ,η,ζ) , how can we calculate (u,v) ?

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = A \cdot \left(R \mid \vec{t} \right) \cdot \begin{pmatrix} \xi \\ \eta \\ \zeta \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} u \\ v \end{pmatrix} = \frac{1}{\tilde{z}} \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$$

• given (u,v), how can we calculate (ξ,η,ζ) ?

$$\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = z R^T A^{-1} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} - R^T \vec{t} \quad \text{with } z \ge 0$$

 (ξ,η,ζ) is not unique but element of a ray

- coordinates of camera origin: $(\xi, \eta, \zeta)^T = -R^T \vec{t}$
- aperture angle: $(A^{-1}(0, v_0, 1)^T, A^{-1}(v_1, v_0, 1)^T)$

$$arccos \frac{\langle A^{-1}(0, v_{0}, 1)^{T}, A^{-1}(u_{max}, v_{0}, 1)^{T} ||}{||A^{-1}(0, v_{0}, 1)^{T}|| \cdot ||A^{-1}(u_{max}, v_{0}, 1)^{T}||}$$

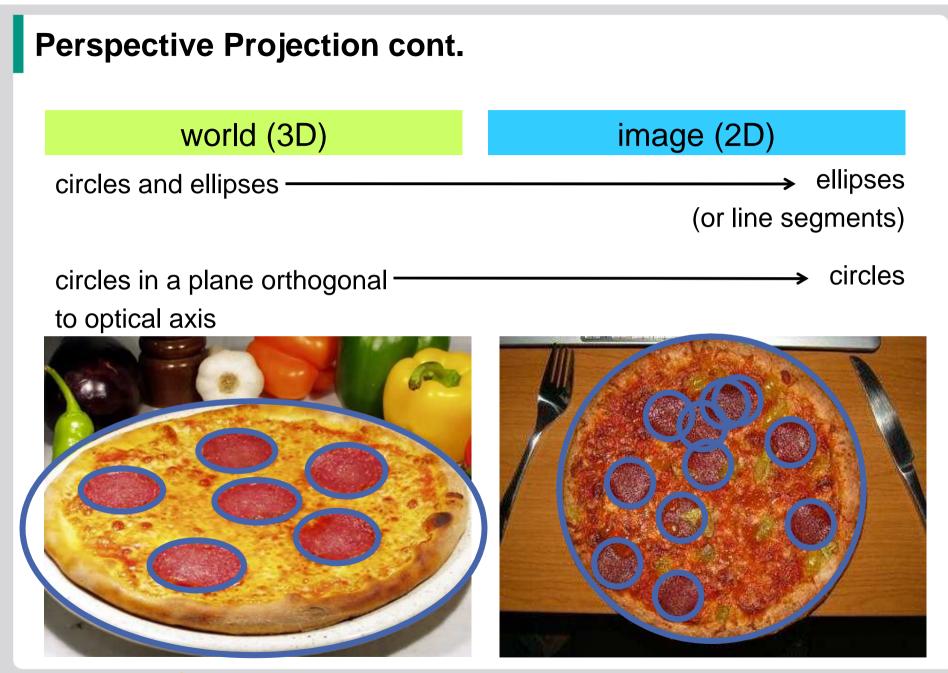
- parameters:
 - intrinisic parameters: describe the camera (5 parameters) $u_0, v_0, \alpha', \beta', \theta$
 - extrinsic parameters: the pose of the camera (6 parameters) R, \vec{t}
 - sometimes, the model is simplified assuming

$$\theta = 90^{\circ}, \ \alpha' = \beta$$

aperture

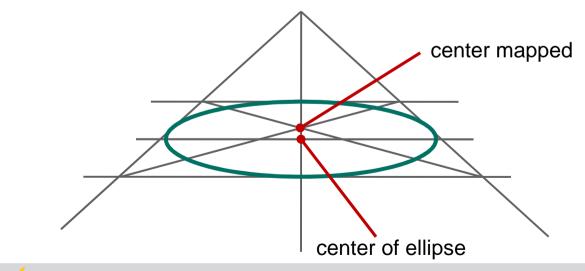
angle

Perspective Projection		
world (3D)	in	nage (2D)
lines ————————————————————————————————————	 lines points	(if line meets focal point)
parallel lines ———	 lines intersectin in one point parallel lines 	(if lines are orthogonal to
	 line and point 	optical axis) (if one line meets focal point)



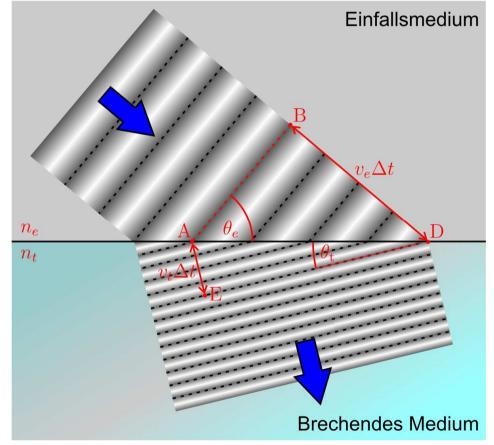
Perspective Projection cont.

- perspective projection does <u>not</u>:
 - preserve angles
 - preserve lengths
 - preserve area
 - preserve ratio of lengths
 - map the center of a circle/ellipse onto the center of the ellipse mapped (except: if the plane is orthogonal to the optical axis)



Lenses

- pinhole cameras poorly let light through \rightarrow lenses
- Snell's law of refraction

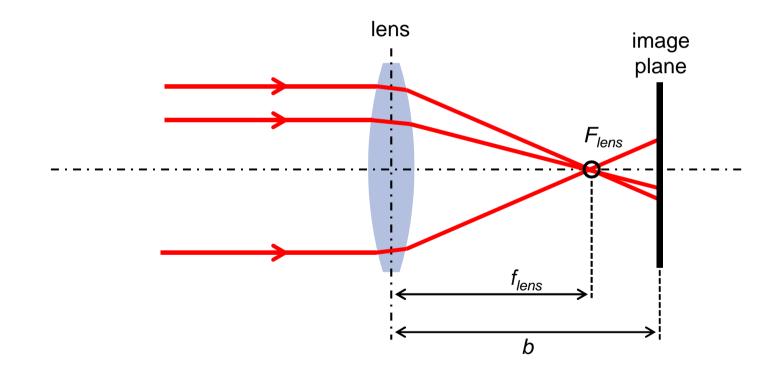


Snell's law: $n_e \sin \theta_e = n_t \sin \theta_t$ $n_{medium} = \frac{v_{vacuum}}{v_{medium}}$

Lenses cont.

• focal length of a lens:

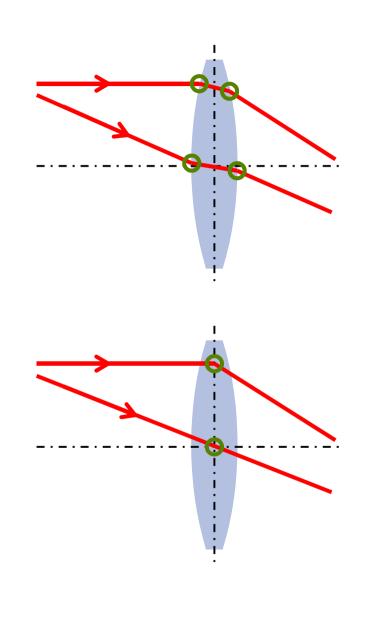
the distance between lens and focal point, the point where rays of light parallel to the optical axis meet after being refracted



Thin Lenses

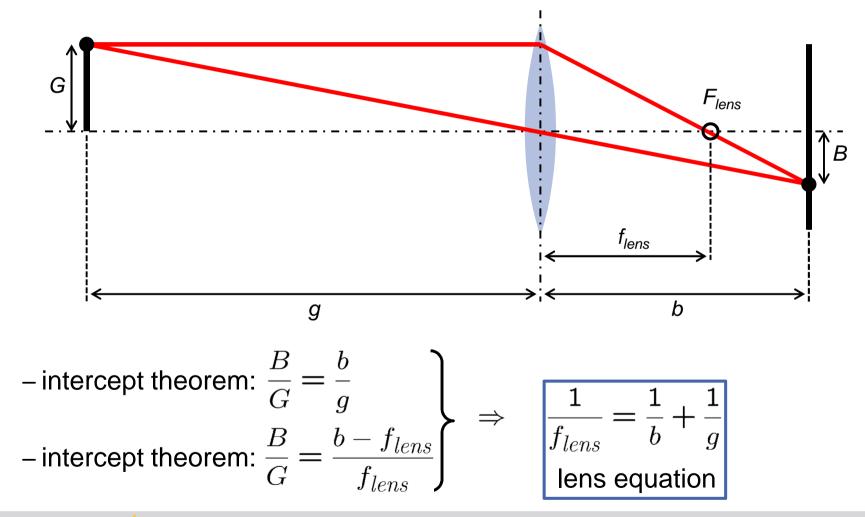
- refraction in lenses
 - surface air/glass
 - surface glass/air

- thin lenses
 - negligible thickness
 - double refraction can be approximated by single refraction at the center line
 - simpler geometric modeling



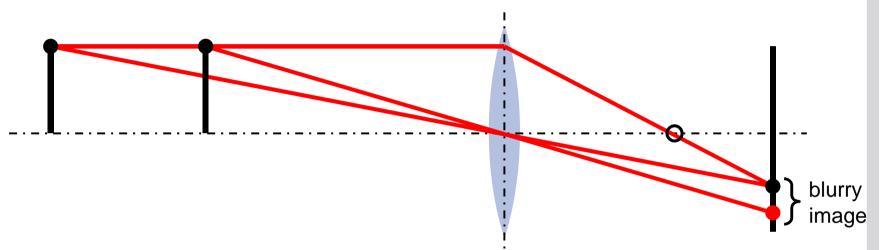
Thin Lenses cont.

• which condition must hold for a sharp image?



Thin Lenses cont.

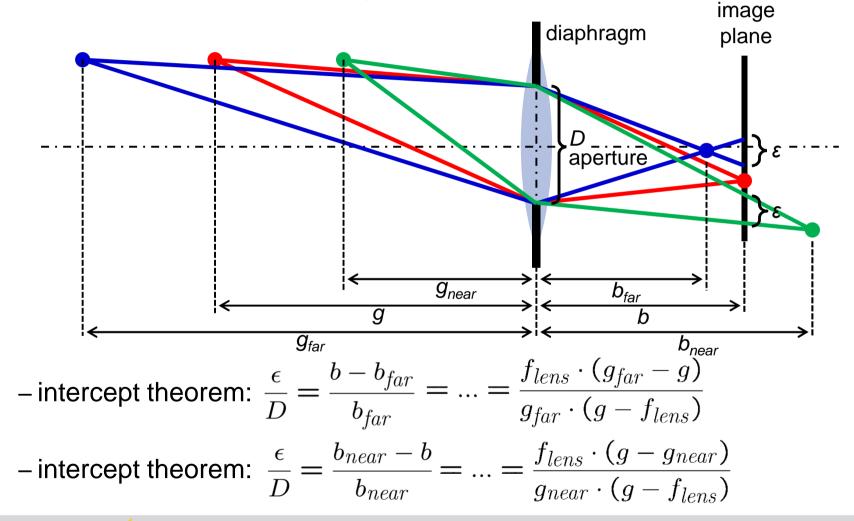
• What happens when lens equation is violated?



• How much can we vary g with little effect?

Depth of Field

• How much can we vary g with little effect?



Depth of Field cont.

$$\frac{\epsilon}{D} = \frac{f_{lens} \cdot (g_{far} - g)}{g_{far} \cdot (g - f_{lens})}$$

$$\frac{\epsilon}{D} = \frac{f_{lens} \cdot (g - g_{near})}{g_{near} \cdot (g - f_{lens})}$$

$$\Delta g = g_{far} - g_{near} = 2\frac{gd_h}{d_h + (g - f_{lens})}$$

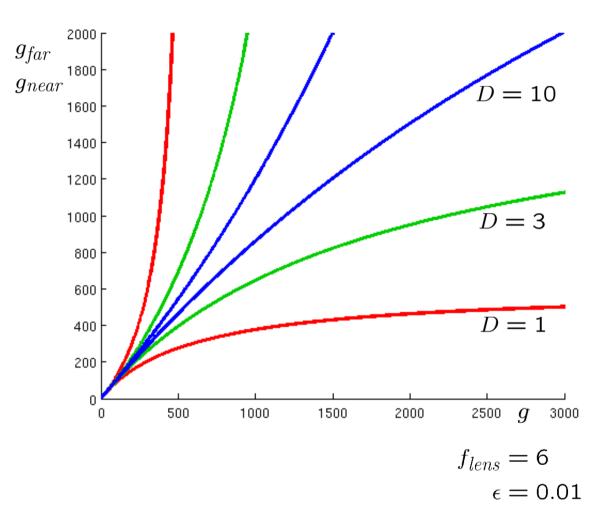
$$\Delta g = g_{far} - g_{near} = 2\frac{gd_h(g - f_{lens})}{d_h^2 - (g - f_{lens})^2}$$

$$d_h = \frac{Df_{lens}}{\epsilon} \quad \text{(hyperfocal distance)}$$

- observation:

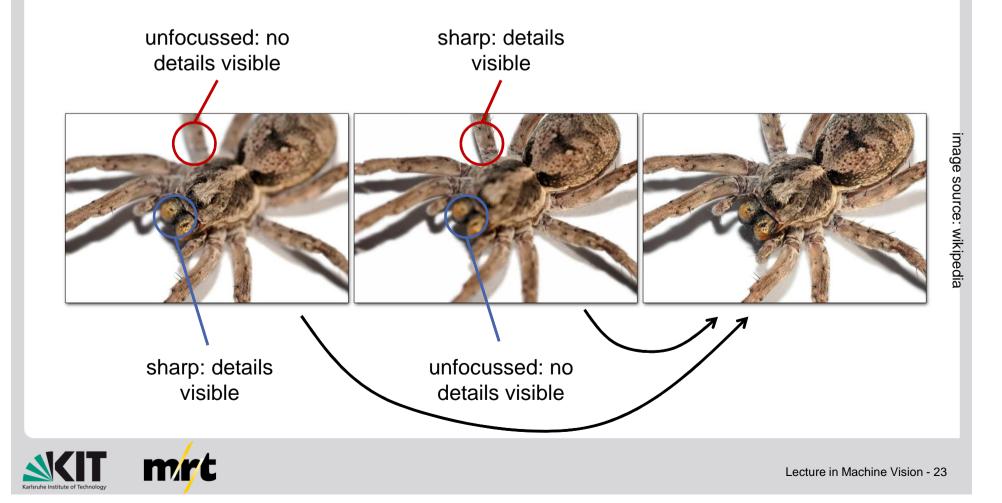
for $g \to d_h + f_{lens}$ holds: $g_{far} \to \infty$ $\Delta g \to \infty$

Depth of Field cont.



Focus Series

- focus bracketing/focus stacking
 - image series with varying distance between lens and image plane to overcome a limited depth of field



Lens Aberrations

- geometric aberrations: no unique focal point due to imperfect lens geometry
 - spherical aberration, astigmatism, coma
- chromatic aberrations: dispersion caused by different refraction index for different wavelength ("rainbow effect")
- vignetting:

reduced light intensity and saturation in the image periphery

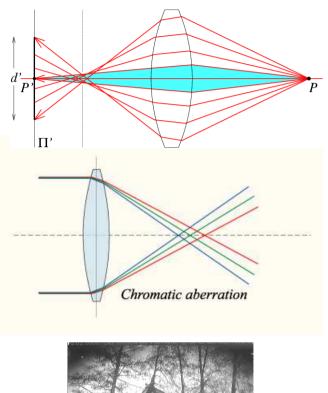


Image Distortion

• image distortion:

perspective projection should map lines to lines. But most cameras do not \rightarrow distortion

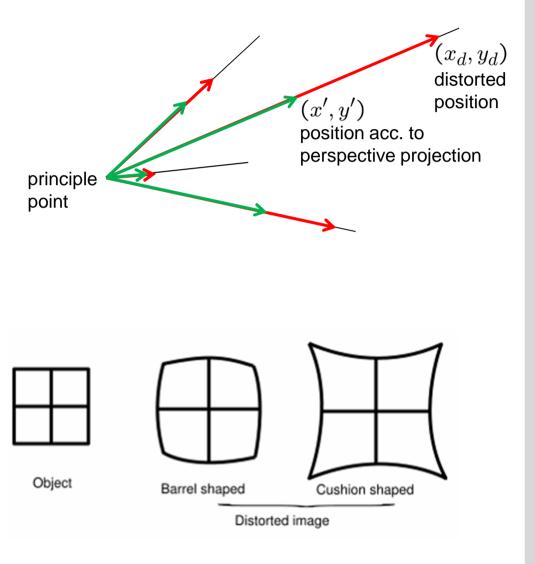
radial distortion

suboptimal shape of lens

tangential distortion
 suboptimal mounting of lens

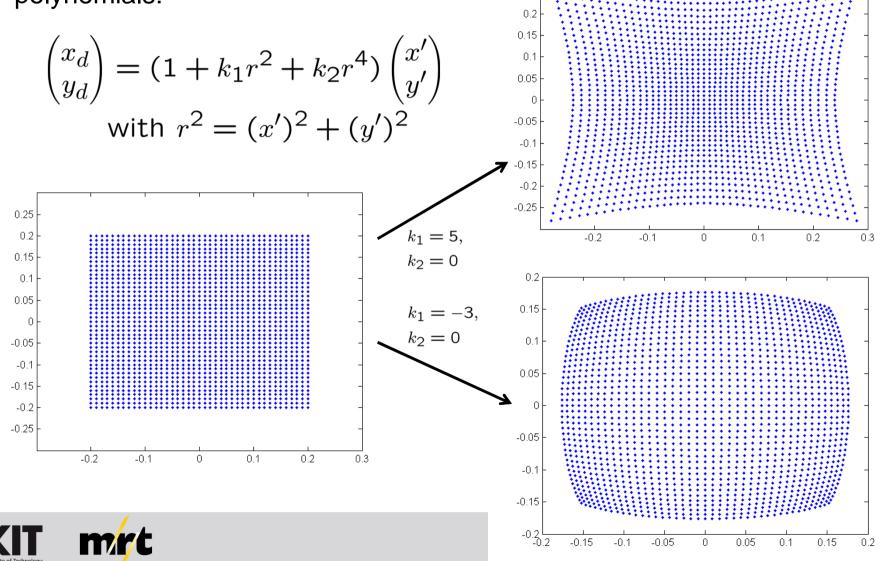
Radial Distortion

- points are shifted away from principle point
- radial distortion is symmetric
- amount of shifting depends nonlinearly from the distance to the principle point
- rectangular objects appear barrel-shaped or cushionshaped in the image



Radial Distortion cont.

• mathematical modeling with even polynomials:



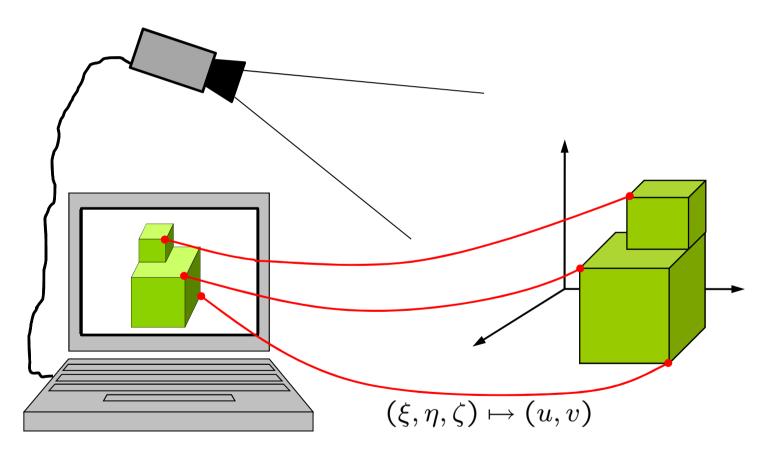
0.25

CAMERA CALIBRATION

Camera Calibration

- world-to-image mapping contains many parameters:
 - intrinisic parameters:
 - $u_0, v_0, lpha', eta', heta$
 - extrinsic parameters:
 - R,\vec{t}
 - distortion parameters:
 - k_{1}, k_{2}
- calibration = process to determine parameters

 calibration: determine camera parameters from pairs of image points and world points



- from one or several pictures we get corresponding points: $(\xi_i, \eta_i, \zeta_i) \mapsto (u_i, v_i)$
- find camera parameters A, R, \vec{t} that map (ξ_i, η_i, ζ_i) onto (u_i, v_i) as good as possible
- several approaches. Here:
 - 1. Tsai's approach
 - 2. Zhang's approach

• world-to-image mapping:

$$z \cdot \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \underbrace{A \cdot \left(R \mid \vec{t} \right)}_{=:M} \cdot \begin{pmatrix} \xi \\ \eta \\ \zeta \\ 1 \end{pmatrix}$$

• *M* is 3x4 matrix $M = \begin{pmatrix} m_{1,1} & \dots & m_{1,4} \\ \vdots & \ddots & \vdots \end{pmatrix}$

$$a = \begin{pmatrix} \vdots & \ddots & \vdots \\ m_{3,1} & \cdots & m_{3,4} \end{pmatrix}$$

• we get:

$$\vec{m}_{1,1:3} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} + m_{1,4} - u(\vec{m}_{3,1:3} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} + m_{3,4}) = 0$$

 $\vec{m}_{2,1:3} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} + m_{2,4} - v(\vec{m}_{3,1:3} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} + m_{3,4}) = 0$

• determining camera parameters by minimizing:

$$\sum_{i} \left(\left(\vec{m}_{1,1:3} \begin{pmatrix} \xi_i \\ \eta_i \\ \zeta_i \end{pmatrix} + m_{1,4} - u_i (\vec{m}_{3,1:3} \begin{pmatrix} \xi_i \\ \eta_i \\ \zeta_i \end{pmatrix} + m_{3,4}) \right)^2 + \left(\vec{m}_{2,1:3} \begin{pmatrix} \xi_i \\ \eta_i \\ \zeta_i \end{pmatrix} + m_{2,4} - v_i (\vec{m}_{3,1:3} \begin{pmatrix} \xi_i \\ \eta_i \\ \zeta_i \end{pmatrix} + m_{3,4}) \right)^2 \right)$$

• zeroing partial derivatives:

$$\begin{pmatrix} \sum_{i} S_{i} & 0 & -\sum_{i} u_{i} S_{i} \\ 0 & \sum_{i} S_{i} & -\sum_{i} v_{i} S_{i} \\ -\sum_{i} u_{i} S_{i} & -\sum_{i} v_{i} S_{i} & \sum_{i} (u_{i}^{2} + v_{i}^{2}) S_{i} \end{pmatrix} \cdot \begin{pmatrix} \vec{m}_{1,1:4}^{T} \\ \vec{m}_{2,1:4}^{T} \\ \vec{m}_{3,1:4}^{T} \end{pmatrix} = \vec{0}$$

with

 $S_i = (\xi_i, \eta_i, \zeta_i, 1)^T (\xi_i, \eta_i, \zeta_i, 1)$

- solution: Eigenvector with respect to smallest Eigenvalue
 - -1 degree of freedom: length of solution
- structure of the solution:

$$M = A \cdot \left(R \middle| \vec{t} \right) = \begin{pmatrix} \vec{m}_{1,1:3} & m_{1,4} \\ \vec{m}_{2,1:3} & m_{2,4} \\ \vec{m}_{3,1:3} & m_{3,4} \end{pmatrix}$$

with
$$\vec{m}_{1,1:3} = \alpha' \vec{r}_{1,1:3} - \beta' \cot \theta \vec{r}_{2,1:3} + u_0 \vec{r}_{3,1:3}$$

 $m_{1,4} = \alpha' t_1 - \beta' \cot \theta t_2 + u_0 t_3$
 $\vec{m}_{2,1:3} = \frac{\beta'}{\sin \theta} \vec{r}_{2,1:3} + v_0 \vec{r}_{3,1:3}$
 $m_{2,4} = \frac{\beta'}{\sin \theta} t_2 + v_0 t_3$
 $\vec{m}_{3,1:3} = \vec{r}_{3,1:3}$
 $m_{3,4} = t_3$

- *R* is a rotation matrix: $||\vec{r}_{1,1:3}|| = 1$ $||\vec{r}_{2,1:3}|| = 1$ $||\vec{r}_{3,1:3}|| = 1$ $\langle \vec{r}_{1,1:3}, \vec{r}_{2,1:3} \rangle = 0$ $\langle \vec{r}_{2,1:3}, \vec{r}_{3,1:3} \rangle = 0$ $\langle \vec{r}_{3,1:3}, \vec{r}_{1,1:3} \rangle = 0$
- Since $\vec{m}_{3,1:3} = \vec{r}_{3,1:3}$ choose solution with $||\vec{m}_{3,1:3}||^2 = 1$ (two possibilities, check det(R) = +1)
- Given M, how can we derive camera parameters R, t, α', β', θ, u₀, v₀?

$$\vec{r}_{3,1:3} = \vec{m}_{3,1:3}$$

$$t_3 = m_{3,4}$$

$$v_0 = \langle \vec{m}_{3,1:3}, \vec{m}_{2,1:3} \rangle$$

$$u_0 = \langle \vec{m}_{3,1:3}, \vec{m}_{1,1:3} \rangle$$

$$\vec{\beta'} = \sqrt{||\vec{m}_{2,1:3}||^2 - v_0^2}$$

$$t_2 = \left(\frac{\beta'}{\sin\theta}\right)^{-1} (m_{2,4} - v_0 t_3)$$

$$\vec{r}_{2,1:3} = \left(\frac{\beta'}{\sin\theta}\right)^{-1} (m_{2,1:3} - v_0 \vec{r}_{3,1:3})$$

$$\vec{r}_{2,1:3} = \left(\frac{\beta'}{\sin\theta}\right)^{-1} (u_0 v_0 - \langle \vec{m}_{1,1:3}, \vec{m}_{2,1:3} \rangle)$$

$$\vec{r}_{1,1:3} = (\alpha')^{-1} (\vec{m}_{1,1:3} + \beta' \cot\theta \vec{r}_{2,1:3} - u_0 \vec{r}_{3,1:3})$$

$$t_1 = (\alpha')^{-1} (m_{1,4} + \beta' \cot\theta t_2 - u_0 t_3)$$

Summary: Tsai's approach

- 1. create an artificial scene with calibration markers (markers in general position)
- 2. measure 3d position of calibration markers
- 3. make a picture
- 4. measure 2d position of calibration markers
- 5. solve optimization problem to estimate matrix M
- 6. decompose *M* into *A*, *R*, *t*

R.Y. Tsai,

An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, pp. 364-374, 1986.

Camera Calibration: Zhang

Assume 3d-points on the plane $\zeta = 0$

These points are mapped by a camera to

$$z \cdot \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = A \cdot \left(R \cdot \begin{pmatrix} \xi \\ \eta \\ 0 \end{pmatrix} + \vec{t} \right)$$
$$= \underbrace{A \cdot \left(\vec{r}_{1:3,1}, \ \vec{r}_{1:3,2}, \ \vec{t} \right)}_{=:H} \cdot \begin{pmatrix} \xi \\ \eta \\ 1 \end{pmatrix}$$

H is called a *homography*

$$H = A \cdot \left(\vec{r}_{1:3,1}, \ \vec{r}_{1:3,2}, \ \vec{t} \right)$$

If we know several homographies H_1, H_2, \ldots, H_n , can we derive A?

Let us first consider

 $B = A^{-T}A^{-1}$

 $\begin{array}{l} A \text{ is full rank, upper triangular matrix} \\ \rightarrow A^{-1} \text{ exists and is also upper triangular matrix} \\ \rightarrow B & \text{ is symmetric, has 6 different entries} \\ \rightarrow A^{-1} \text{ can be calculated from } B \text{ via Cholesky decomposition} \\ \rightarrow \text{ if we know } B \text{ , we can derive } A \text{ easily} \end{array}$

$$B = \begin{pmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{1,2} & b_{2,2} & b_{2,3} \\ b_{1,3} & b_{2,3} & b_{3,3} \end{pmatrix}$$

$$H = A \cdot \left(\vec{r}_{1:3,1}, \ \vec{r}_{1:3,2}, \ \vec{t} \right)$$

 ${\boldsymbol R}$ is a rotation matrix, hence

$$0 = \langle \vec{r}_{1:3,1}, \ \vec{r}_{1:3,2} \rangle = \langle A^{-1} \vec{h}_{1:3,1}, \ A^{-1} \vec{h}_{1:3,2} \rangle$$

= $\vec{h}_{1:3,1}^T \cdot (A^{-T} A^{-1}) \cdot \vec{h}_{1:3,2}$
= $\vec{h}_{1:3,1}^T \cdot B \cdot \vec{h}_{1:3,2}$ (1)

$$\langle \vec{r}_{1:3,1}, \ \vec{r}_{1:3,1} \rangle = 1 = \langle \vec{r}_{1:3,2}, \ \vec{r}_{1:3,2} \rangle \langle A^{-1}\vec{h}_{1:3,1}, \ A^{-1}\vec{h}_{1:3,1} \rangle \vec{h}_{1:3,1}^T \cdot B \cdot \vec{h}_{1:3,1} \rangle \Rightarrow 0 = \vec{h}_{1:3,1}^T \cdot B \cdot \vec{h}_{1:3,1} - \vec{h}_{1:3,2}^T \cdot B \cdot \vec{h}_{1:3,2}$$
(2)

Hence, from one homography H we obtain two constraints (1), (2) for B

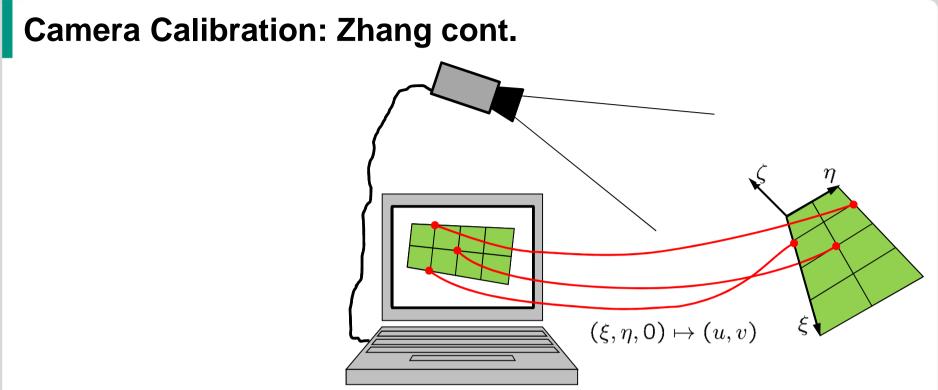
If we know several homographies H_1, H_2, \ldots, H_n , can we derive A?

- from each homography we obtain two constraints
- 3 homographies yield in total 6 constraints in order to estimate 6 parameters
- >3 homographies yield an overdetermined system of constraints
 - \rightarrow least squares method finds a matrix that minimizes the residuals

Sketch: Zhang's approach

- 1. ...
- 2. ...
- 3. ...
- 4. estimate homographies *H*
- 5. solve optimization problem to estimate matrix *B*
- 6. decompose *B* into *A*, *R*, *t*
- 7. ...

How do we get homographies?



- assume a set of point correspondences for points on a plane
- find homographyH such that

$$z \cdot (u, v, \mathbf{1})^T \approx H \cdot (\xi_i, \eta_i, \mathbf{1})^T$$

- one correspondence yields two constraints
- $\vec{h}_{1,1:3} \cdot (\xi_i, \eta_i, 1)^T u_i \cdot \vec{h}_{3,1:3} \cdot (\xi_i, \eta_i, 1)^T \approx 0$ $\vec{h}_{2,1:3} \cdot (\xi_i, \eta_i, 1)^T - v_i \cdot \vec{h}_{3,1:3} \cdot (\xi_i, \eta_i, 1)^T \approx 0$
- least squares to minimize residuals and find best homographyH

Sketch: Zhang's approach

- 1. create a plane with calibration markers at known positions
- 2. make several pictures of it with different position and orientation of plane
- 3. measure 2d image position of markers
- 4. estimate homographies *H* for each pixture
- 5. solve optimization problem to estimate matrix *B*
- 6. decompose *B* into *A*, *R*, *t*
- 7. optimize all parameters using nonlinear least squares

Finally, we get

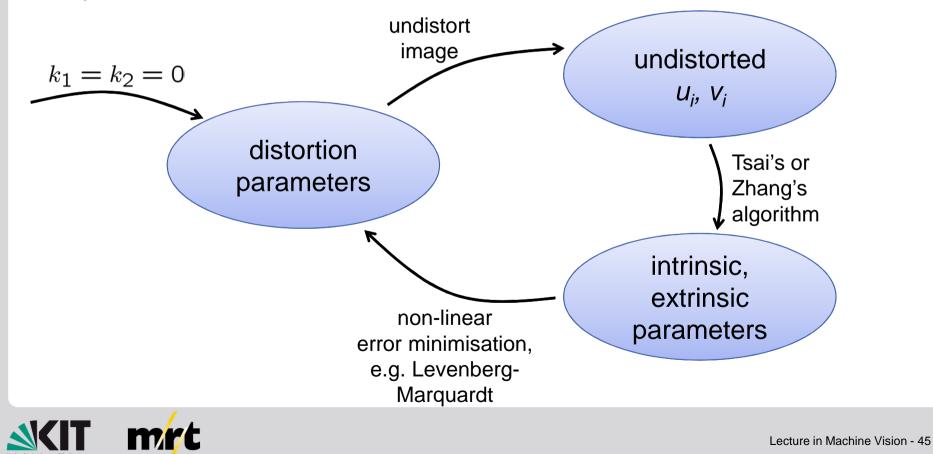
- intrinsic parameters A
- rotation *R* and translation *t* for each plane

Z. Zhang,

A flexible new technique for camera calibration.

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330-1334, 2000

- calibrating distortion parameters k_1 , k_2 :
 - non-linear optimization process
 - iterative estimation of intrinsic, extrinsic parameters and distortion parameters

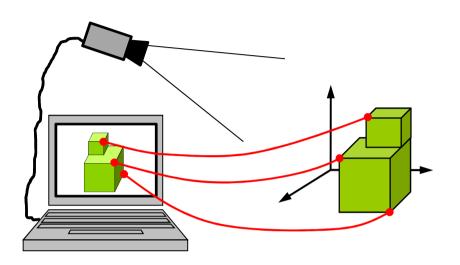


• effect of undistortion:

• example: camera with wide-angle lens

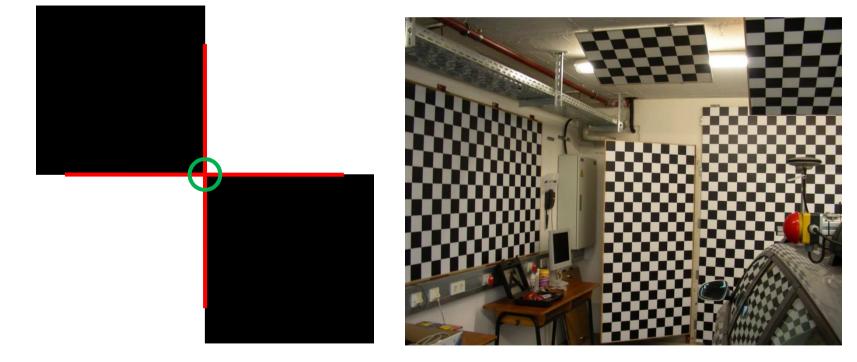


- calibration markers
 - characteristic features
 - clearly recognizable
 - easy to determine position in world
 - easy to localize in image with high precision
 - features not coplanar in world (for Tsai's approach)
 - avoid occlusion
 - avoid shadow
 - as many as possible

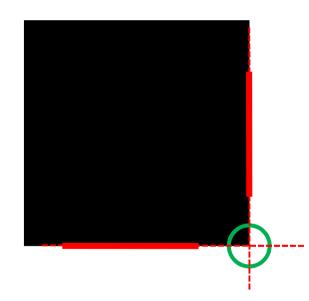


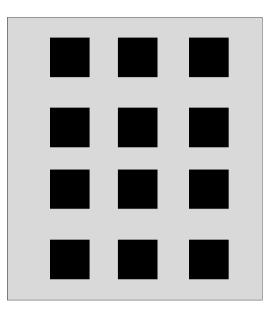
- chessboard markers
 - determine image position calculating the point of intersection of horizontal and vertical edges



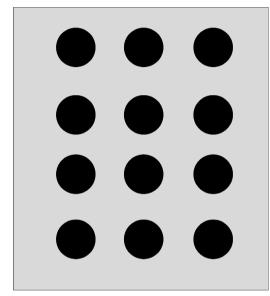


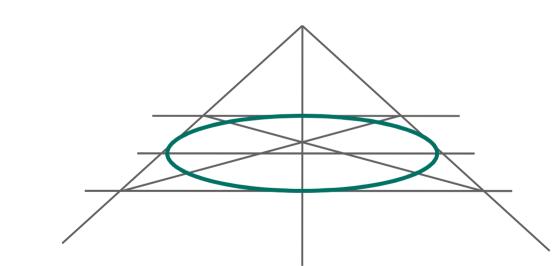
- squares and rectangles
 - determine image position calculating the point of intersection of horizontal and vertical edges



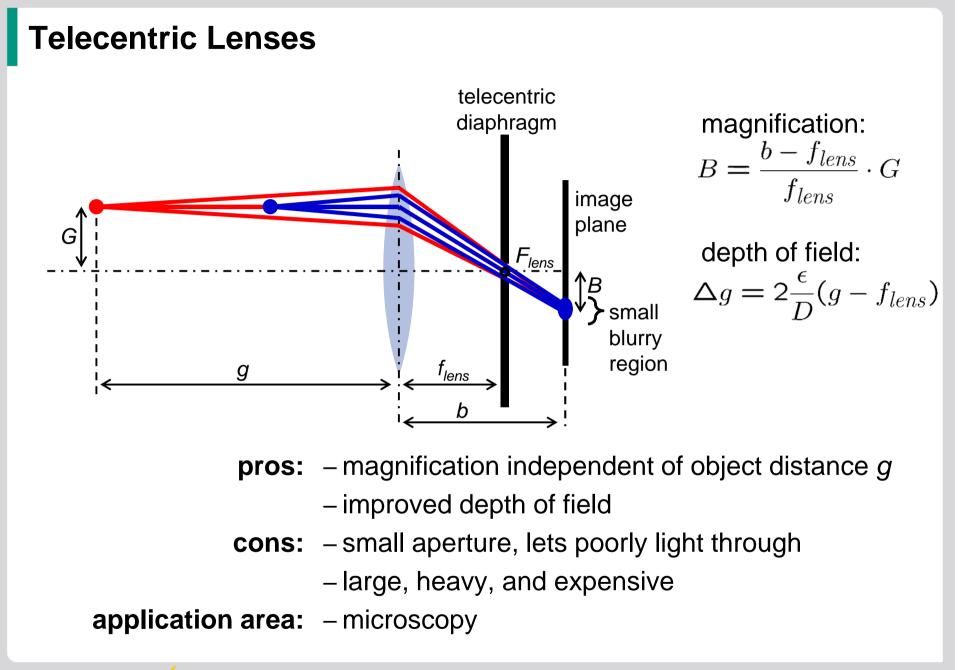


- circles
 - determine center of resulting ellipse
 - iterative correction of mapping error of circle center



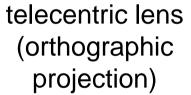


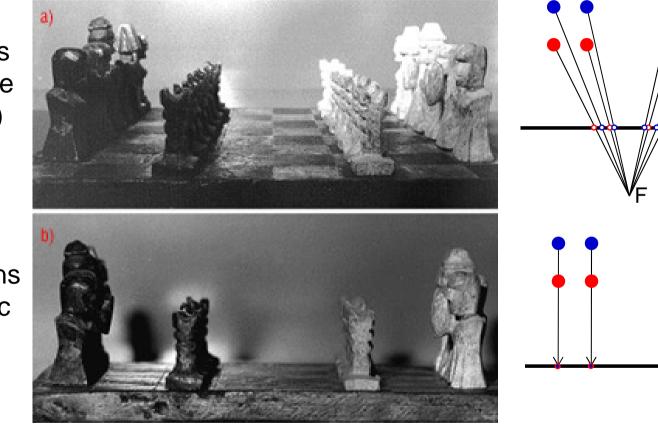
NON-STANDARD CAMERAS



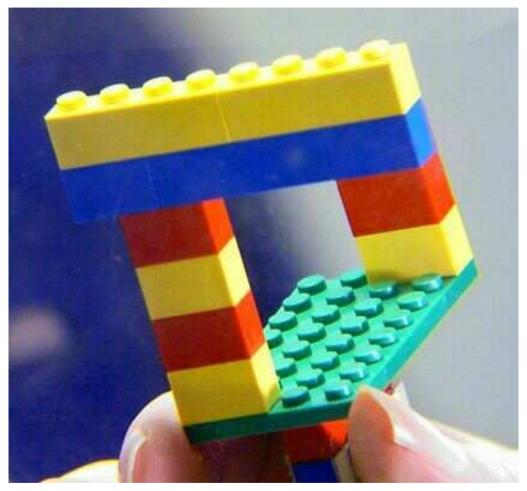
Telecentric Lenses cont.

normal lens (perspective projection)





Telecentric Lenses cont.

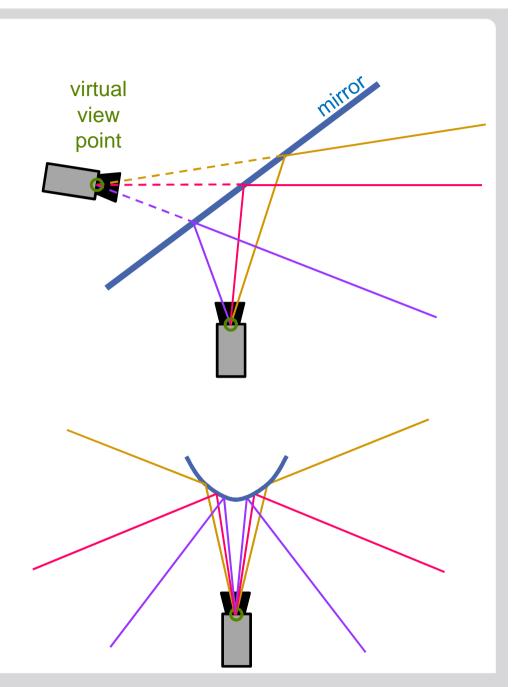


source: http://www.lhup.edu/~dsimanek/3d/telecent.htm

Catadioptric Cameras

 catadioptric cameras = cameras with mirrors

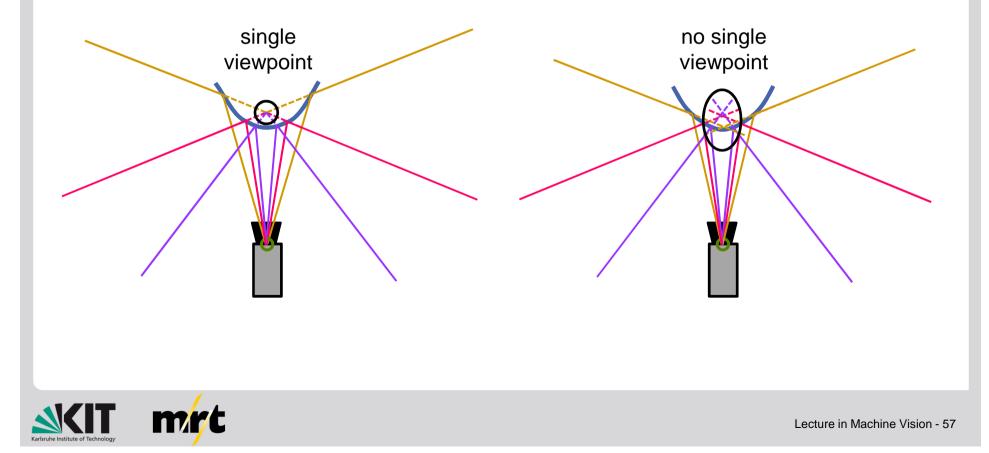
 planar mirror



Catadioptric Cameras Cont.

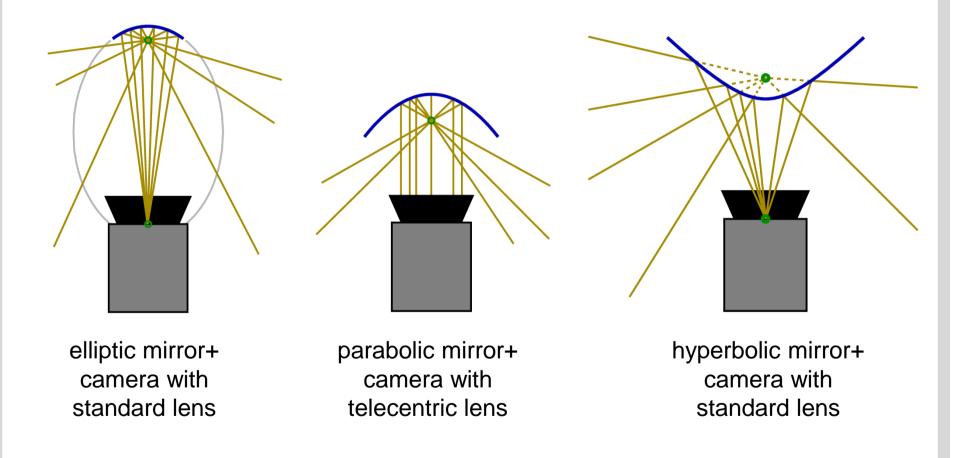
• Single viewpoint

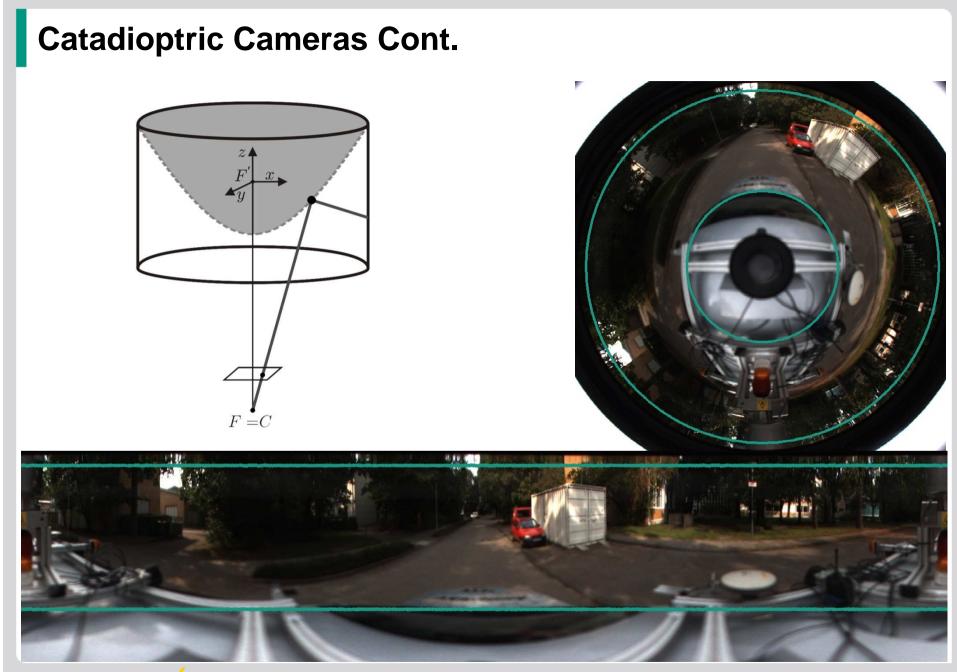
A catadioptric camera has a single viewpoint if all object-mirror light rays intersect in a single point (e.g. if the mirror could be replaced by a pinhole camera)



Catadioptric Cameras Cont.

• camera setups with single viewpoint:



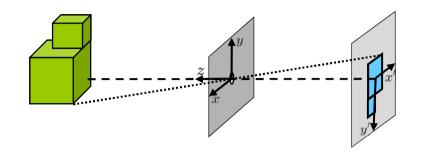


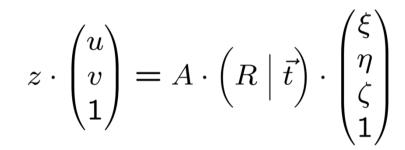
SUMMARY: CAMERA OPTICS

Summary

pinhole camera

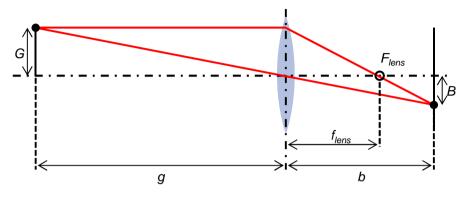
- pinhole camera model
- world-to-image-mapping
- intrinsic/extrinsic camera parameters
- properties of perspective projection
- lenses
- camera calibration
- non-standard cameras

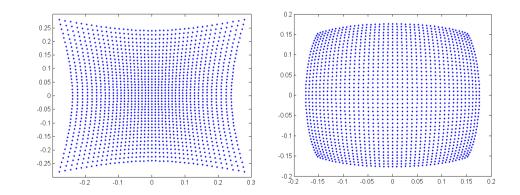




Summary cont.

- pinhole camera
- lenses
 - lens equation
 - depth of field
 - focus series
 - lens aberrations
 - radial distortion
- camera calibration
- non-standard cameras



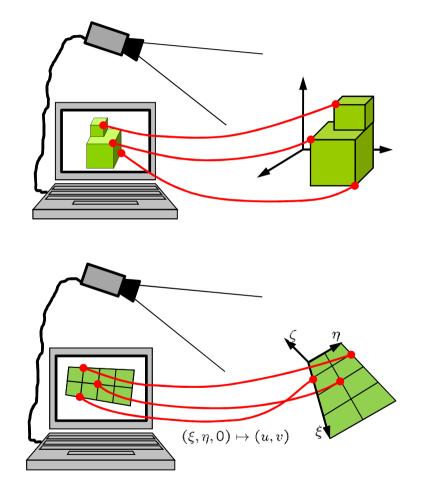


Summary cont.

- pinhole camera
- lenses

camera calibration

- Tsai's camera calibration
 approach
- Zhang's approach with homographies
- calibration of distortion parameters
- calibration markers and calibration objects
- non-standard cameras



Summary cont.

- pinhole camera
- lenses
- camera calibration
- non-standard cameras
 - telecentric lenses
 - catadioptric cameras

